1,000 research outputs found

    Special Pyrheliometer Shroud Development

    Get PDF
    To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator

    Memory systems for signal generating photoelectric image detectors

    Get PDF
    Digital systems are discussed which have the capacity to handle the large amounts of information contained in a typical image. It was used with a high gain pulse counting television camera tube, with a silicon target image detector and an analog to digital converter between the detector and the memory

    Parabolic Dish Concentrator (PDC-1)

    Get PDF
    The design, construction, and installation of the Parabolic Dish Concentrator, Type 1 (PDC-1) has been one of the most significant JPL concentrator projects because of the knowledge gained about this type of concentrator and the development of design, testing, and analysis procedures which are applicable to all solar concentrator projects. The need for these procedures was more clearly understood during the testing period which started with the prototype panel evaluation and ended with the performance characterization of the completed concentrator. For each phase of the test program, practical test procedures were required and these procedures defined the mathematical analysis which was essential for successful concentrator development. The concentrator performance appears to be limited only by the distortions resulting from thermal gradients through the reflecting panels. Simple optical testing can be extremely effective, but comprehensive mechanical and optical analysis is essential for cost effective solar concentrator development

    Development and testing of Parabolic Dish Concentrator No. 1

    Get PDF
    Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems

    View-limiting shrouds for insolation radiometers

    Get PDF
    Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined

    JPL tests of a LaJet concentrator facet

    Get PDF
    A LaJet Energy Company (LEC) concentrator facet, 60 in. in diameter, was tested for imaging quality. The following two methods were used: (1) autofocus tests with a point source of light at the facet's radius of curvature; and (2) tests with the Sun close to the horizon as a distant source. The tests of the LaJet facet indicate that all of the solar image reflected by an LEC 460 solar concentrator made of like facets should fall within a 9-in. aperture if the outer facets are carefully adjusted. Such a concentrator would have acceptable performance, but complete evaluation must be made with an assembled concentrator

    Phycomyces

    Get PDF
    This monographic review on a fungus is not addressed to mycologists. None of the authors has been trained or has otherwise acquired a general proficiency in mycology. They are motivated by a common interest in the performances of signal handling exhibited by the sense organs of all organisms and by the desire to attack these as yet totally obscure aspects of molecular biology by the study of a microorganism with certain desirable properties. The sporangiophore of the fungus Phycomyces is a gigantic, single-celled, erect, cylindrical, aerial hypha. It is sensitive to at least four distinct stimuli: light, gravity, stretch, and some unknown stimulus by which it avoids solid objects. These stimuli control a common output, the growth rate, producing either temporal changes in growth rate or tropic responses. We are interested in the output because it gives us information about the reception of the various signals. In the absence of external stimuli, the growth rate is controlled by internal signals keeping the network of biochemical processes in balance. The external stimuli interact with the internal signals. We wish to inquire into the early steps of this interaction. For light, for instance, the cell must have a receptor pigment as the first mediator. What kind of a molecule is this pigment? Which organelle contains it? What chemical reaction happens after a light quantum has been absorbed? And how is the information introduced by this primary photochemical event amplified in a controlled manner and processed in the next step? How do a few quanta or a few molecules trigger macroscopic responses? Will we find ourselves confronted with devices wholly distinct from anything now known in biology

    Concentrator optical characterization using computer mathematical modelling and point source testing

    Get PDF
    The optical characteristics of a paraboloidal solar concentrator are analyzed using the intercept factor curve (a format for image data) to describe the results of a mathematical model and to represent reduced data from experimental testing. This procedure makes it possible not only to test an assembled concentrator, but also to evaluate single optical panels or to conduct non-solar tests of an assembled concentrator. The use of three-dimensional ray tracing computer programs to calculate the mathematical model is described. These ray tracing programs can include any type of optical configuration from simple paraboloids to array of spherical facets and can be adapted to microcomputers or larger computers, which can graphically display real-time comparison of calculated and measured data

    On the Enhanced Interstellar Scattering Toward B1849+005

    Full text link
    (Abridged) This paper reports new Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the extragalactic source B1849+005 at frequencies between 0.33 and 15 GHz and the re-analysis of archival VLA observations at 0.33, 1.5, and 4.9 GHz. The structure of this source is complex but interstellar scattering dominates the structure of the central component at least to 15 GHz. An analysis of the phase structure functions of the interferometric visibilities shows the density fluctuations along this line of sight to be anisotropic (axial ratio = 1.3) with a frequency-independent position angle, and having an inner scale of roughly a few hundred kilometers. The anisotropies occur on length scales of order 10^{15} cm (D/5 kpc), which within the context of certain magnetohydrodynamic turbulence theories indicates the length scale on which the kinetic and magnetic energy densities are comparable. A conservative upper limit on the velocity of the scattering material is 1800 km/s. In the 0.33 GHz field of view, there are a number of other sources that might also be heavily scattered. Both B1849+005 and PSR B1849+00 are highly scattered, and they are separated by only 13'. If the lines of sight are affected by the same ``clump'' of scattering material, it must be at least 2.3 kpc distant. However, a detailed attempt to account for the scattering observables toward these sources does not produce a self-consistent set of parameters for such a clump. A clump of H\alpha emission, possibly associated with the H II region G33.418-0.004, lies between these two lines of sight, but it seems unable to account for all of the required excess scattering.Comment: 23 pages, LaTeX2e AASTeX, 13 figures in 14 PostScript files, accepted for publication in Ap
    corecore